Skip to main content

Scientists Just Added a Shocking 20 New Branches to The Tree of Life

We had no idea they existed.

Scientists have identified the genomes of close to 8,000 microorganisms from samples taken out in the field – and around a third of them are distinct from any life forms known to science, adding a crazy 20 new branches to our tree of microscopic life.
Microorganisms fall into two categories, either bacteria or archaea, and make up the vast majority of known species on the planet. But only 1 to 2 percent of them can currently be cultured in a lab, so this study looked at real-world microbes collected from some of the most extreme places on Earth, finding a mother lode of undiscovered species.
The team from the University of Queensland in Australia analysed nearly 1,500 environmental samples already logged in a public database, using some serious computing power to make sense of the DNA sequences in each one and build up a picture of thousands of genomes.
"The real value of these genomes is that many are evolutionarily distinct from previously recovered genomes," says lead researcher Gene Tyson.
"They increase the evolutionary diversity spanned by both bacterial and archaeal genome trees by over 30 per cent, and are the first representatives within 17 bacterial and three archaeal phyla."
When you consider that all animals with a backbone belong to one single phylum, or branch on the tree of life, you can see how significant the new discoveries are.
The process used by the researchers is a relatively new approach known as metagenomics, or the study of genetic material in environmental rather than cultured samples. With modern-day computing techniques, researchers can piece together the DNA sequences and identify the microbes present.
To add to the 80,000 genomes currently logged and recorded, the team found 7,280 bacterial and 623 archaeal genomes that met their quality standards for completeness.
Take, for example Uncultured Bacterial Phylum 9 – the first genomic representatives of the Terra bacteria candidate phylum SHA-109, it was isolated from baboon faeces, palm oil effluent, and other substances.
Or there's Uncultured Archaeal Phylum 2, the first representative from the Marine Hydrothermal Vent Group, and home to genomes collected from the depths of the oceans and hydrothermal vents.
The next step is to look for genes within the new genomes that resemble genes we've seen before, which could give us clues about what these microbes are like and how they act. Some of them are so different to existing genomes, though, that it could take some time.
Further down the line, this study and others like it could lead to new types of antibiotics, which are often discovered in bacteria and fungi. The research might also be used to develop new chemicals and materials for industrial use.
On top of that, uncovering so much more about the types of life on the planet can help in the study of where we all come from in the first place, and how life evolved from these tiniest of critters.
"All the questions we have about ancient evolutionary events – what our last common ancestor looked like, when methane metabolism arose, when oxygen-producing organisms evolved – they really benefit from having more genomes to look at and a more detailed tree," one of the researchers, Donovan Parks, told Alice Klein at New Scientist.
What's certain is there's a lot more out there to find. Some experts think we've only found a very small percentage of the trillions of microbial species living on Earth, though most of those will fill in gaps in existing phyla rather than needing new ones.
As the researchers point out, genome-spotting tools are continually improving, and they're confident that even more genomes can be found in the samples they worked with.
"Constructing a comprehensive genomic repository of microbial diversity lays the foundation for furthering our understanding of the role of microorganisms in critical biogeochemical and industrial processes," says Parks.
The research has been published in Nature Microbiology.


Comments

Popular posts from this blog

Team Work - Meaning and Tips for better Team Work

A single brain is not always capable of making key decisions on its own. To come up with an efficient solution, an individual requires the help and advice of others. A team is established when individuals get together on a common platform with the common goal of completing a task. To guarantee optimum compatibility, team members should ideally come from similar backgrounds and have a single aim. To provide their best, the team members must complement each other and function as a single unit in tight cooperation. "There is no I in Team Work," as the saying goes, and each member must put the needs of his team first. Personal interests must take a second seat. Any team's performance is directly proportionate to the relationship between its members and their combined efforts. What is the definition of teamwork? Teamwork is defined as the sum of each team member's efforts toward the fulfilment of the team's goal. In other words, any team's backbone is its ability t

Scientists discover a new theory / The fundamental property of light – 150 years after Maxwell

Light plays a vital role in our everyday lives and technologies based on light are all around us. So we might expect that our understanding of light is pretty settled. But scientists have just uncovered a new fundamental property of light that gives new insight into the 150-year-old classical theory of electromagnetism and which could lead to applications manipulating light at the nanoscale. It is unusual for a pure-theory physics paper to make it into the journal Science. So when one does, it’s worth a closer look. In the new study, researchers bring together one of physics' most venerable set of equations – those of James Clerk’s Maxwell’s famous theory of light – with one of the hot topics in modern solid-state physics: the quantum spin Hall effect and topological insulators . To understand what the fuss is about, let’s first consider the behaviour of electrons in the quantum spin Hall effect. Electrons possess an intrinsic spin as if they were tiny spinning-tops,

19 Types Of Content Writing Services For Your Business

  It’s hard to know which type of content writing service is the best for your business.  There are so many  different types of content writing services  out there that it’s easy to get confused. You end up wondering if you’re choosing the right one for you. In this post, we’ll get rid of this confusion, once and for all. I’m going to list out the different kinds of writing services you could use.  By the end of this article, you’ll know whether you need a copywriter, a content writer, or a social media marketer and how they can help you achieve your business goals. This post is also useful for writers who want to hone their writing skills in a specific area. Let’s dive in and learn what types of content writing services exist and when you should use them. (Bonus – if you want to  hire the top 1%  of writers, go to the bottom to learn how). Types of Content Writing Services As we go through the list of content writing services, you will find that many of them overlap. That’s perfectly